Indian Statistical Institute, Bangalore B. Math (III) First Semester 2019-2020 Mid-Semester Examination : Statistics (III) Date: 12-09-2019 Maximum Score 40 Duration: 3 Hours

- 1. Find characteristic function of the random vector \mathbf{Y} , $(n \times 1)$, whose density function is proportional to $\exp\left[-\frac{1}{2}\mathbf{y'}\mathbf{A}\mathbf{y} \mathbf{y'}\mathbf{b} c\right]$ where \mathbf{A} is an $n \times n$ positive definite matrix, \mathbf{b} is an $n \times 1$ vector and c is a real number.
 - [12]
- 2. If $\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} \sim \mathbf{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \sigma^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}\right), \sigma^2 > 0$ and $\rho^2 < 1$, then find a condition on a and b so that that the random variable $W = \frac{(Y_1 + aY_2)^2}{(Y_1 + bY_2)^2} \times \frac{(b+\rho)^2 + 1-\rho^2}{(a+\rho)^2 + 1-\rho^2}$ has F distribution. Under your condition compare the distributions of W and $\frac{1}{W}$.

$$6 + 3 = 9$$

3. Under the simple linear regression model with uncorrelated errors, if β_0 is known then obtain *least squares estimator* for β_1 . Find *residual sum of squares*. Hence find an unbiased estimator for σ^2 , the error variance.

[4+3+5=12]

4. Under the simple linear regression model obtain *likelihood ratio test* (LRT), stating clearly the assumptions that you make, for testing the hypothesis H_0 : $\beta_1 = 0$ vs $H_1: \beta_1 \neq 0$. Also obtain a 90% confidence interval (CI) for β_1 .

[9+3=12]